240 research outputs found

    Singularity Theory for W-Algebra Potentials

    Get PDF
    The Landau potentials of W3W_3-algebra models are analyzed with algebraic-geometric methods. The number of ground states and the number of independent perturbations of every potential coincide and can be computed. This number agrees with the structure of ground states obtained in a previous paper, namely, as the phase structure of the IRF models of Jimbo et al. The singularities associated to these potentials are identified.Comment: 11 pp., LaTeX file, UVA-93-4

    The exact renormalization group in Astrophysics

    Full text link
    The coarse-graining operation in hydrodynamics is equivalent to a change of scale which can be formalized as a renormalization group transformation. In particular, its application to the probability distribution of a self-gravitating fluid yields an "exact renormalization group equation" of Fokker-Planck type. Since the time evolution of that distribution can also be described by a Fokker-Planck equation, we propose a connection between both equations, that is, a connection between scale and time evolution. We finally remark on the essentially non-perturbative nature of astrophysical problems, which suggests that the exact renormalization group is the adequate tool for them.Comment: World Scientific style, 6 pages, presented at the 2nd Conference on the Exact RG, Rome 200

    Renormalization group irreversible functions in more than two dimensions

    Get PDF
    There are two general irreversibility theorems for the renormalization group in more than two dimensions: the first one is of entropic nature, while the second one, by Forte and Latorre, relies on the properties of the stress-tensor trace, and has been recently questioned by Osborn and Shore. We start by establishing under what assumptions this second theorem can still be valid. Then it is compared with the entropic theorem and shown to be essentially equivalent. However, since the irreversible function of the (corrected) Forte-Latorre theorem is non universal (whereas the relative entropy of the other theorem is universal), it needs the additional step of renormalization. On the other hand, the irreversibility theorem is only guaranteed to be unambiguous if the integral of the stress-tensor trace correlator is finite, which happens for free theories only in dimension smaller than four.Comment: 4 pages; minor changes to improve readability; to appear in Phys. Rev.

    A non-perturbative Kolmogorov turbulence approach to the cosmic web structure

    Get PDF
    The Kolmogorov approach to turbulence is applied to the Burgers turbulence in the stochastic adhesion model of large-scale structure formation. As the perturbative approach to this model is unreliable, here a new, non-perturbative approach, based on a suitable formulation of Kolmogorov's scaling laws, is proposed. This approach suggests that the power-law exponent of the matter density two-point correlation function is in the range 1–1.33, but it also suggests that the adhesion model neglects important aspects of the gravitational dynamics

    Pressure measurements on real high-speed trains travelling through tunnels

    Get PDF
    From November, 2006 to March, 2008 a series of tests were performed onboard a wide variety of trains in order to check their response to pressure waves generated while passing through tunnels. In this communication part of the experimental results are presented, showing the pressure waves generated and focusing on the differences caused by some parameters involved such as train length and shape or tunnel lengths. The results are in accordance with the train wave signature method and the one-dimensional pressure wave theory

    Nonlinear spherical gravitational downfall of gas onto a solid ball: analytic and numerical results

    Full text link
    The process of downfall of initially homogeneous gas onto a solid ball due to the ball's gravity (relevant in astrophysical situations) is studied with a combination of analytic and numerical methods. The initial explicit solution soon becomes discontinuous and gives rise to a shock wave. Afterwards, there is a crossover between two intermediate asymptotic similarity regimes, where the shock wave propagates outwards according to two self-similar laws, initially accelerating and eventually decelerating and vanishing, leading to a static state. The numerical study allows one to investigate in detail this dynamical problem and its time evolution, verifying and complementing the analytic results on the initial solution, intermediate self-similar laws and static long-term solution.Comment: 19 pages, 10 PS figures (some large

    Anisotropy in Homogeneous Rotating Turbulence

    Full text link
    The effective stress tensor of a homogeneous turbulent rotating fluid is anisotropic. This leads us to consider the most general axisymmetric four-rank ``viscosity tensor'' for a Newtonian fluid and the new terms in the turbulent effective force on large scales that arise from it, in addition to the microscopic viscous force. Some of these terms involve couplings to vorticity and others are angular momentum non conserving (in the rotating frame). Furthermore, we explore the constraints on the response function and the two-point velocity correlation due to axisymmetry. Finally, we compare our viscosity tensor with other four-rank tensors defined in current approaches to non-rotating anisotropic turbulence.Comment: 14 pages, RevTe

    Statistics and geometry of cosmic voids

    Full text link
    We introduce new statistical methods for the study of cosmic voids, focusing on the statistics of largest size voids. We distinguish three different types of distributions of voids, namely, Poisson-like, lognormal-like and Pareto-like distributions. The last two distributions are connected with two types of fractal geometry of the matter distribution. Scaling voids with Pareto distribution appear in fractal distributions with box-counting dimension smaller than three (its maximum value), whereas the lognormal void distribution corresponds to multifractals with box-counting dimension equal to three. Moreover, voids of the former type persist in the continuum limit, namely, as the number density of observable objects grows, giving rise to lacunar fractals, whereas voids of the latter type disappear in the continuum limit, giving rise to non-lacunar (multi)fractals. We propose both lacunar and non-lacunar multifractal models of the cosmic web structure of the Universe. A non-lacunar multifractal model is supported by current galaxy surveys as well as cosmological NN-body simulations. This model suggests, in particular, that small dark matter halos and, arguably, faint galaxies are present in cosmic voids.Comment: 39 pages, 8 EPS figures, supersedes arXiv:0802.038

    Stochastic formulation of the renormalization group: supersymmetric structure and topology of the space of couplings

    Full text link
    The exact or Wilson renormalization group equations can be formulated as a functional Fokker-Planck equation in the infinite-dimensional configuration space of a field theory, suggesting a stochastic process in the space of couplings. Indeed, the ordinary renormalization group differential equations can be supplemented with noise, making them into stochastic Langevin equations. Furthermore, if the renormalization group is a gradient flow, the space of couplings can be endowed with a supersymmetric structure a la Parisi-Sourlas. The formulation of the renormalization group as supersymmetric quantum mechanics is useful for analysing the topology of the space of couplings by means of Morse theory. We present simple examples with one or two couplings.Comment: 13 pages, based on contribution to "Progress in Supersymmetric Quantum Mechanics" (Valladolid U.), accepted in Journal of Physics
    • …
    corecore